Struct arrayvec::ArrayString [−][src]
A string with a fixed capacity.
The ArrayString is a string backed by a fixed size array. It keeps track
of its length.
The string is a contiguous value that you can store directly on the stack if needed.
Methods
impl<A: Array<Item = u8>> ArrayString<A>[src] 
impl<A: Array<Item = u8>> ArrayString<A>pub fn new() -> ArrayString<A>[src] 
pub fn new() -> ArrayString<A>Create a new empty ArrayString.
Capacity is inferred from the type parameter.
use arrayvec::ArrayString; let mut string = ArrayString::<[_; 16]>::new(); string.push_str("foo"); assert_eq!(&string[..], "foo"); assert_eq!(string.capacity(), 16);
pub fn from(s: &str) -> Result<Self, CapacityError<&str>>[src] 
pub fn from(s: &str) -> Result<Self, CapacityError<&str>>Create a new ArrayString from a str.
Capacity is inferred from the type parameter.
Errors if the backing array is not large enough to fit the string.
use arrayvec::ArrayString; let mut string = ArrayString::<[_; 3]>::from("foo").unwrap(); assert_eq!(&string[..], "foo"); assert_eq!(string.len(), 3); assert_eq!(string.capacity(), 3);
pub fn from_byte_string(b: &A) -> Result<Self, Utf8Error>[src] 
pub fn from_byte_string(b: &A) -> Result<Self, Utf8Error>Create a new ArrayString from a byte string literal.
Errors if the byte string literal is not valid UTF-8.
use arrayvec::ArrayString; let string = ArrayString::from_byte_string(b"hello world").unwrap();
pub fn capacity(&self) -> usize[src] 
pub fn capacity(&self) -> usizeReturn the capacity of the ArrayString.
use arrayvec::ArrayString; let string = ArrayString::<[_; 3]>::new(); assert_eq!(string.capacity(), 3);
pub fn is_full(&self) -> bool[src] 
pub fn is_full(&self) -> boolReturn if the ArrayString is completely filled.
use arrayvec::ArrayString; let mut string = ArrayString::<[_; 1]>::new(); assert!(!string.is_full()); string.push_str("A"); assert!(string.is_full());
pub fn push(&mut self, c: char)[src] 
pub fn push(&mut self, c: char)Adds the given char to the end of the string.
Panics if the backing array is not large enough to fit the additional char.
use arrayvec::ArrayString; let mut string = ArrayString::<[_; 2]>::new(); string.push('a'); string.push('b'); assert_eq!(&string[..], "ab");
pub fn try_push(&mut self, c: char) -> Result<(), CapacityError<char>>[src] 
pub fn try_push(&mut self, c: char) -> Result<(), CapacityError<char>>Adds the given char to the end of the string.
Returns Ok if the push succeeds.
Errors if the backing array is not large enough to fit the additional char.
use arrayvec::ArrayString; let mut string = ArrayString::<[_; 2]>::new(); string.try_push('a').unwrap(); string.try_push('b').unwrap(); let overflow = string.try_push('c'); assert_eq!(&string[..], "ab"); assert_eq!(overflow.unwrap_err().element(), 'c');
pub fn push_str(&mut self, s: &str)[src] 
pub fn push_str(&mut self, s: &str)Adds the given string slice to the end of the string.
Panics if the backing array is not large enough to fit the string.
use arrayvec::ArrayString; let mut string = ArrayString::<[_; 2]>::new(); string.push_str("a"); string.push_str("d"); assert_eq!(&string[..], "ad");
pub fn try_push_str<'a>(
    &mut self, 
    s: &'a str
) -> Result<(), CapacityError<&'a str>>[src] 
pub fn try_push_str<'a>(
    &mut self, 
    s: &'a str
) -> Result<(), CapacityError<&'a str>>Adds the given string slice to the end of the string.
Returns Ok if the push succeeds.
Errors if the backing array is not large enough to fit the string.
use arrayvec::ArrayString; let mut string = ArrayString::<[_; 2]>::new(); string.try_push_str("a").unwrap(); let overflow1 = string.try_push_str("bc"); string.try_push_str("d").unwrap(); let overflow2 = string.try_push_str("ef"); assert_eq!(&string[..], "ad"); assert_eq!(overflow1.unwrap_err().element(), "bc"); assert_eq!(overflow2.unwrap_err().element(), "ef");
pub fn pop(&mut self) -> Option<char>[src] 
pub fn pop(&mut self) -> Option<char>Removes the last character from the string and returns it.
Returns None if this ArrayString is empty.
use arrayvec::ArrayString; let mut s = ArrayString::<[_; 3]>::from("foo").unwrap(); assert_eq!(s.pop(), Some('o')); assert_eq!(s.pop(), Some('o')); assert_eq!(s.pop(), Some('f')); assert_eq!(s.pop(), None);
pub fn truncate(&mut self, new_len: usize)[src] 
pub fn truncate(&mut self, new_len: usize)Shortens this ArrayString to the specified length.
If new_len is greater than the string’s current length, this has no
effect.
Panics if new_len does not lie on a char boundary.
use arrayvec::ArrayString; let mut string = ArrayString::<[_; 6]>::from("foobar").unwrap(); string.truncate(3); assert_eq!(&string[..], "foo"); string.truncate(4); assert_eq!(&string[..], "foo");
pub fn remove(&mut self, idx: usize) -> char[src] 
pub fn remove(&mut self, idx: usize) -> charRemoves a char from this ArrayString at a byte position and returns it.
This is an O(n) operation, as it requires copying every element in the
array.
Panics if idx is larger than or equal to the ArrayString’s length,
or if it does not lie on a char boundary.
use arrayvec::ArrayString; let mut s = ArrayString::<[_; 3]>::from("foo").unwrap(); assert_eq!(s.remove(0), 'f'); assert_eq!(s.remove(1), 'o'); assert_eq!(s.remove(0), 'o');
pub fn clear(&mut self)[src] 
pub fn clear(&mut self)Make the string empty.
pub unsafe fn set_len(&mut self, length: usize)[src] 
pub unsafe fn set_len(&mut self, length: usize)Set the strings’s length.
This function is unsafe because it changes the notion of the
number of “valid” bytes in the string. Use with care.
This method uses debug assertions to check the validity of length
and may use other debug assertions.
pub fn as_str(&self) -> &str[src] 
pub fn as_str(&self) -> &strReturn a string slice of the whole ArrayString.
Methods from Deref<Target = str>
pub fn len(&self) -> usize1.0.0[src] 
pub fn len(&self) -> usizeReturns the length of self.
This length is in bytes, not chars or graphemes. In other words,
it may not be what a human considers the length of the string.
Examples
Basic usage:
let len = "foo".len(); assert_eq!(3, len); let len = "ƒoo".len(); // fancy f! assert_eq!(4, len);
pub fn is_empty(&self) -> bool1.0.0[src] 
pub fn is_empty(&self) -> boolReturns true if self has a length of zero bytes.
Examples
Basic usage:
let s = ""; assert!(s.is_empty()); let s = "not empty"; assert!(!s.is_empty());
pub fn is_char_boundary(&self, index: usize) -> bool1.9.0[src] 
pub fn is_char_boundary(&self, index: usize) -> boolChecks that index-th byte lies at the start and/or end of a
UTF-8 code point sequence.
The start and end of the string (when index == self.len()) are
considered to be
boundaries.
Returns false if index is greater than self.len().
Examples
let s = "Löwe 老虎 Léopard"; assert!(s.is_char_boundary(0)); // start of `老` assert!(s.is_char_boundary(6)); assert!(s.is_char_boundary(s.len())); // second byte of `ö` assert!(!s.is_char_boundary(2)); // third byte of `老` assert!(!s.is_char_boundary(8));
pub fn as_bytes(&self) -> &[u8]1.0.0[src] 
pub fn as_bytes(&self) -> &[u8]Converts a string slice to a byte slice. To convert the byte slice back
into a string slice, use the str::from_utf8 function.
Examples
Basic usage:
let bytes = "bors".as_bytes(); assert_eq!(b"bors", bytes);
pub unsafe fn as_bytes_mut(&mut self) -> &mut [u8]1.20.0[src] 
pub unsafe fn as_bytes_mut(&mut self) -> &mut [u8]Converts a mutable string slice to a mutable byte slice. To convert the
mutable byte slice back into a mutable string slice, use the
str::from_utf8_mut function.
Examples
Basic usage:
let mut s = String::from("Hello"); let bytes = unsafe { s.as_bytes_mut() }; assert_eq!(b"Hello", bytes);
Mutability:
let mut s = String::from("🗻∈🌏"); unsafe { let bytes = s.as_bytes_mut(); bytes[0] = 0xF0; bytes[1] = 0x9F; bytes[2] = 0x8D; bytes[3] = 0x94; } assert_eq!("🍔∈🌏", s);
pub fn as_ptr(&self) -> *const u81.0.0[src] 
pub fn as_ptr(&self) -> *const u8Converts a string slice to a raw pointer.
As string slices are a slice of bytes, the raw pointer points to a
u8. This pointer will be pointing to the first byte of the string
slice.
Examples
Basic usage:
let s = "Hello"; let ptr = s.as_ptr();
pub fn get<I>(&self, i: I) -> Option<&<I as SliceIndex<str>>::Output> where
    I: SliceIndex<str>, 1.20.0[src] 
pub fn get<I>(&self, i: I) -> Option<&<I as SliceIndex<str>>::Output> where
    I: SliceIndex<str>, Returns a subslice of str.
This is the non-panicking alternative to indexing the str. Returns
None whenever equivalent indexing operation would panic.
Examples
let v = String::from("🗻∈🌏"); assert_eq!(Some("🗻"), v.get(0..4)); // indices not on UTF-8 sequence boundaries assert!(v.get(1..).is_none()); assert!(v.get(..8).is_none()); // out of bounds assert!(v.get(..42).is_none());
pub fn get_mut<I>(
    &mut self, 
    i: I
) -> Option<&mut <I as SliceIndex<str>>::Output> where
    I: SliceIndex<str>, 1.20.0[src] 
pub fn get_mut<I>(
    &mut self, 
    i: I
) -> Option<&mut <I as SliceIndex<str>>::Output> where
    I: SliceIndex<str>, Returns a mutable subslice of str.
This is the non-panicking alternative to indexing the str. Returns
None whenever equivalent indexing operation would panic.
Examples
let mut v = String::from("hello"); // correct length assert!(v.get_mut(0..5).is_some()); // out of bounds assert!(v.get_mut(..42).is_none()); assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v)); assert_eq!("hello", v); { let s = v.get_mut(0..2); let s = s.map(|s| { s.make_ascii_uppercase(); &*s }); assert_eq!(Some("HE"), s); } assert_eq!("HEllo", v);
pub unsafe fn get_unchecked<I>(&self, i: I) -> &<I as SliceIndex<str>>::Output where
    I: SliceIndex<str>, 1.20.0[src] 
pub unsafe fn get_unchecked<I>(&self, i: I) -> &<I as SliceIndex<str>>::Output where
    I: SliceIndex<str>, Returns a unchecked subslice of str.
This is the unchecked alternative to indexing the str.
Safety
Callers of this function are responsible that these preconditions are satisfied:
- The starting index must come before the ending index;
- Indexes must be within bounds of the original slice;
- Indexes must lie on UTF-8 sequence boundaries.
Failing that, the returned string slice may reference invalid memory or
violate the invariants communicated by the str type.
Examples
let v = "🗻∈🌏"; unsafe { assert_eq!("🗻", v.get_unchecked(0..4)); assert_eq!("∈", v.get_unchecked(4..7)); assert_eq!("🌏", v.get_unchecked(7..11)); }
pub unsafe fn get_unchecked_mut<I>(
    &mut self, 
    i: I
) -> &mut <I as SliceIndex<str>>::Output where
    I: SliceIndex<str>, 1.20.0[src] 
pub unsafe fn get_unchecked_mut<I>(
    &mut self, 
    i: I
) -> &mut <I as SliceIndex<str>>::Output where
    I: SliceIndex<str>, Returns a mutable, unchecked subslice of str.
This is the unchecked alternative to indexing the str.
Safety
Callers of this function are responsible that these preconditions are satisfied:
- The starting index must come before the ending index;
- Indexes must be within bounds of the original slice;
- Indexes must lie on UTF-8 sequence boundaries.
Failing that, the returned string slice may reference invalid memory or
violate the invariants communicated by the str type.
Examples
let mut v = String::from("🗻∈🌏"); unsafe { assert_eq!("🗻", v.get_unchecked_mut(0..4)); assert_eq!("∈", v.get_unchecked_mut(4..7)); assert_eq!("🌏", v.get_unchecked_mut(7..11)); }
pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str1.0.0[src] 
pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &strCreates a string slice from another string slice, bypassing safety checks.
This is generally not recommended, use with caution! For a safe
alternative see str and Index.
This new slice goes from begin to end, including begin but
excluding end.
To get a mutable string slice instead, see the
slice_mut_unchecked method.
Safety
Callers of this function are responsible that three preconditions are satisfied:
- beginmust come before- end.
- beginand- endmust be byte positions within the string slice.
- beginand- endmust lie on UTF-8 sequence boundaries.
Examples
Basic usage:
let s = "Löwe 老虎 Léopard"; unsafe { assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21)); } let s = "Hello, world!"; unsafe { assert_eq!("world", s.slice_unchecked(7, 12)); }
pub unsafe fn slice_mut_unchecked(
    &mut self, 
    begin: usize, 
    end: usize
) -> &mut str1.5.0[src] 
pub unsafe fn slice_mut_unchecked(
    &mut self, 
    begin: usize, 
    end: usize
) -> &mut strCreates a string slice from another string slice, bypassing safety
checks.
This is generally not recommended, use with caution! For a safe
alternative see str and IndexMut.
This new slice goes from begin to end, including begin but
excluding end.
To get an immutable string slice instead, see the
slice_unchecked method.
Safety
Callers of this function are responsible that three preconditions are satisfied:
- beginmust come before- end.
- beginand- endmust be byte positions within the string slice.
- beginand- endmust lie on UTF-8 sequence boundaries.
pub fn split_at(&self, mid: usize) -> (&str, &str)1.4.0[src] 
pub fn split_at(&self, mid: usize) -> (&str, &str)Divide one string slice into two at an index.
The argument, mid, should be a byte offset from the start of the
string. It must also be on the boundary of a UTF-8 code point.
The two slices returned go from the start of the string slice to mid,
and from mid to the end of the string slice.
To get mutable string slices instead, see the split_at_mut
method.
Panics
Panics if mid is not on a UTF-8 code point boundary, or if it is
beyond the last code point of the string slice.
Examples
Basic usage:
let s = "Per Martin-Löf"; let (first, last) = s.split_at(3); assert_eq!("Per", first); assert_eq!(" Martin-Löf", last);
pub fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str)1.4.0[src] 
pub fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str)Divide one mutable string slice into two at an index.
The argument, mid, should be a byte offset from the start of the
string. It must also be on the boundary of a UTF-8 code point.
The two slices returned go from the start of the string slice to mid,
and from mid to the end of the string slice.
To get immutable string slices instead, see the split_at method.
Panics
Panics if mid is not on a UTF-8 code point boundary, or if it is
beyond the last code point of the string slice.
Examples
Basic usage:
let mut s = "Per Martin-Löf".to_string(); { let (first, last) = s.split_at_mut(3); first.make_ascii_uppercase(); assert_eq!("PER", first); assert_eq!(" Martin-Löf", last); } assert_eq!("PER Martin-Löf", s);
pub fn chars(&self) -> Chars1.0.0[src] 
pub fn chars(&self) -> CharsReturns an iterator over the chars of a string slice.
As a string slice consists of valid UTF-8, we can iterate through a
string slice by char. This method returns such an iterator.
It's important to remember that char represents a Unicode Scalar
Value, and may not match your idea of what a 'character' is. Iteration
over grapheme clusters may be what you actually want.
Examples
Basic usage:
let word = "goodbye"; let count = word.chars().count(); assert_eq!(7, count); let mut chars = word.chars(); assert_eq!(Some('g'), chars.next()); assert_eq!(Some('o'), chars.next()); assert_eq!(Some('o'), chars.next()); assert_eq!(Some('d'), chars.next()); assert_eq!(Some('b'), chars.next()); assert_eq!(Some('y'), chars.next()); assert_eq!(Some('e'), chars.next()); assert_eq!(None, chars.next());
Remember, chars may not match your human intuition about characters:
let y = "y̆"; let mut chars = y.chars(); assert_eq!(Some('y'), chars.next()); // not 'y̆' assert_eq!(Some('\u{0306}'), chars.next()); assert_eq!(None, chars.next());
pub fn char_indices(&self) -> CharIndices1.0.0[src] 
pub fn char_indices(&self) -> CharIndicesReturns an iterator over the chars of a string slice, and their
positions.
As a string slice consists of valid UTF-8, we can iterate through a
string slice by char. This method returns an iterator of both
these chars, as well as their byte positions.
The iterator yields tuples. The position is first, the char is
second.
Examples
Basic usage:
let word = "goodbye"; let count = word.char_indices().count(); assert_eq!(7, count); let mut char_indices = word.char_indices(); assert_eq!(Some((0, 'g')), char_indices.next()); assert_eq!(Some((1, 'o')), char_indices.next()); assert_eq!(Some((2, 'o')), char_indices.next()); assert_eq!(Some((3, 'd')), char_indices.next()); assert_eq!(Some((4, 'b')), char_indices.next()); assert_eq!(Some((5, 'y')), char_indices.next()); assert_eq!(Some((6, 'e')), char_indices.next()); assert_eq!(None, char_indices.next());
Remember, chars may not match your human intuition about characters:
let yes = "y̆es"; let mut char_indices = yes.char_indices(); assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆') assert_eq!(Some((1, '\u{0306}')), char_indices.next()); // note the 3 here - the last character took up two bytes assert_eq!(Some((3, 'e')), char_indices.next()); assert_eq!(Some((4, 's')), char_indices.next()); assert_eq!(None, char_indices.next());
pub fn bytes(&self) -> Bytes1.0.0[src] 
pub fn bytes(&self) -> BytesAn iterator over the bytes of a string slice.
As a string slice consists of a sequence of bytes, we can iterate through a string slice by byte. This method returns such an iterator.
Examples
Basic usage:
let mut bytes = "bors".bytes(); assert_eq!(Some(b'b'), bytes.next()); assert_eq!(Some(b'o'), bytes.next()); assert_eq!(Some(b'r'), bytes.next()); assert_eq!(Some(b's'), bytes.next()); assert_eq!(None, bytes.next());
pub fn split_whitespace(&self) -> SplitWhitespace1.1.0[src] 
pub fn split_whitespace(&self) -> SplitWhitespaceSplit a string slice by whitespace.
The iterator returned will return string slices that are sub-slices of the original string slice, separated by any amount of whitespace.
'Whitespace' is defined according to the terms of the Unicode Derived
Core Property White_Space.
Examples
Basic usage:
let mut iter = "A few words".split_whitespace(); assert_eq!(Some("A"), iter.next()); assert_eq!(Some("few"), iter.next()); assert_eq!(Some("words"), iter.next()); assert_eq!(None, iter.next());
All kinds of whitespace are considered:
let mut iter = " Mary had\ta\u{2009}little \n\t lamb".split_whitespace(); assert_eq!(Some("Mary"), iter.next()); assert_eq!(Some("had"), iter.next()); assert_eq!(Some("a"), iter.next()); assert_eq!(Some("little"), iter.next()); assert_eq!(Some("lamb"), iter.next()); assert_eq!(None, iter.next());
pub fn lines(&self) -> Lines1.0.0[src] 
pub fn lines(&self) -> LinesAn iterator over the lines of a string, as string slices.
Lines are ended with either a newline (\n) or a carriage return with
a line feed (\r\n).
The final line ending is optional.
Examples
Basic usage:
let text = "foo\r\nbar\n\nbaz\n"; let mut lines = text.lines(); assert_eq!(Some("foo"), lines.next()); assert_eq!(Some("bar"), lines.next()); assert_eq!(Some(""), lines.next()); assert_eq!(Some("baz"), lines.next()); assert_eq!(None, lines.next());
The final line ending isn't required:
let text = "foo\nbar\n\r\nbaz"; let mut lines = text.lines(); assert_eq!(Some("foo"), lines.next()); assert_eq!(Some("bar"), lines.next()); assert_eq!(Some(""), lines.next()); assert_eq!(Some("baz"), lines.next()); assert_eq!(None, lines.next());
pub fn lines_any(&self) -> LinesAny1.0.0[src] 
pub fn lines_any(&self) -> LinesAny: use lines() instead now
An iterator over the lines of a string.
pub fn encode_utf16(&self) -> EncodeUtf161.8.0[src] 
pub fn encode_utf16(&self) -> EncodeUtf16Returns an iterator of u16 over the string encoded as UTF-16.
Examples
Basic usage:
let text = "Zażółć gęślą jaźń"; let utf8_len = text.len(); let utf16_len = text.encode_utf16().count(); assert!(utf16_len <= utf8_len);
pub fn contains<'a, P>(&'a self, pat: P) -> bool where
    P: Pattern<'a>, 1.0.0[src] 
pub fn contains<'a, P>(&'a self, pat: P) -> bool where
    P: Pattern<'a>, Returns true if the given pattern matches a sub-slice of
this string slice.
Returns false if it does not.
Examples
Basic usage:
let bananas = "bananas"; assert!(bananas.contains("nana")); assert!(!bananas.contains("apples"));
pub fn starts_with<'a, P>(&'a self, pat: P) -> bool where
    P: Pattern<'a>, 1.0.0[src] 
pub fn starts_with<'a, P>(&'a self, pat: P) -> bool where
    P: Pattern<'a>, Returns true if the given pattern matches a prefix of this
string slice.
Returns false if it does not.
Examples
Basic usage:
let bananas = "bananas"; assert!(bananas.starts_with("bana")); assert!(!bananas.starts_with("nana"));
pub fn ends_with<'a, P>(&'a self, pat: P) -> bool where
    P: Pattern<'a>,
    <P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, 1.0.0[src] 
pub fn ends_with<'a, P>(&'a self, pat: P) -> bool where
    P: Pattern<'a>,
    <P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, Returns true if the given pattern matches a suffix of this
string slice.
Returns false if it does not.
Examples
Basic usage:
let bananas = "bananas"; assert!(bananas.ends_with("anas")); assert!(!bananas.ends_with("nana"));
pub fn find<'a, P>(&'a self, pat: P) -> Option<usize> where
    P: Pattern<'a>, 1.0.0[src] 
pub fn find<'a, P>(&'a self, pat: P) -> Option<usize> where
    P: Pattern<'a>, Returns the byte index of the first character of this string slice that matches the pattern.
Returns None if the pattern doesn't match.
The pattern can be a &str, char, or a closure that determines if
a character matches.
Examples
Simple patterns:
let s = "Löwe 老虎 Léopard"; assert_eq!(s.find('L'), Some(0)); assert_eq!(s.find('é'), Some(14)); assert_eq!(s.find("Léopard"), Some(13));
More complex patterns using point-free style and closures:
let s = "Löwe 老虎 Léopard"; assert_eq!(s.find(char::is_whitespace), Some(5)); assert_eq!(s.find(char::is_lowercase), Some(1)); assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1)); assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));
Not finding the pattern:
let s = "Löwe 老虎 Léopard"; let x: &[_] = &['1', '2']; assert_eq!(s.find(x), None);
pub fn rfind<'a, P>(&'a self, pat: P) -> Option<usize> where
    P: Pattern<'a>,
    <P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, 1.0.0[src] 
pub fn rfind<'a, P>(&'a self, pat: P) -> Option<usize> where
    P: Pattern<'a>,
    <P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, Returns the byte index of the last character of this string slice that matches the pattern.
Returns None if the pattern doesn't match.
The pattern can be a &str, char, or a closure that determines if
a character matches.
Examples
Simple patterns:
let s = "Löwe 老虎 Léopard"; assert_eq!(s.rfind('L'), Some(13)); assert_eq!(s.rfind('é'), Some(14));
More complex patterns with closures:
let s = "Löwe 老虎 Léopard"; assert_eq!(s.rfind(char::is_whitespace), Some(12)); assert_eq!(s.rfind(char::is_lowercase), Some(20));
Not finding the pattern:
let s = "Löwe 老虎 Léopard"; let x: &[_] = &['1', '2']; assert_eq!(s.rfind(x), None);
pub fn split<'a, P>(&'a self, pat: P) -> Split<'a, P> where
    P: Pattern<'a>, 1.0.0[src] 
pub fn split<'a, P>(&'a self, pat: P) -> Split<'a, P> where
    P: Pattern<'a>, An iterator over substrings of this string slice, separated by characters matched by a pattern.
The pattern can be a &str, char, or a closure that determines the
split.
Iterator behavior
The returned iterator will be a DoubleEndedIterator if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, eg, char but not for &str.
If the pattern allows a reverse search but its results might differ
from a forward search, the rsplit method can be used.
Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".split(' ').collect(); assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]); let v: Vec<&str> = "".split('X').collect(); assert_eq!(v, [""]); let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect(); assert_eq!(v, ["lion", "", "tiger", "leopard"]); let v: Vec<&str> = "lion::tiger::leopard".split("::").collect(); assert_eq!(v, ["lion", "tiger", "leopard"]); let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect(); assert_eq!(v, ["abc", "def", "ghi"]); let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect(); assert_eq!(v, ["lion", "tiger", "leopard"]);
A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect(); assert_eq!(v, ["abc", "def", "ghi"]);
If a string contains multiple contiguous separators, you will end up with empty strings in the output:
let x = "||||a||b|c".to_string(); let d: Vec<_> = x.split('|').collect(); assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
Contiguous separators are separated by the empty string.
let x = "(///)".to_string(); let d: Vec<_> = x.split('/').collect(); assert_eq!(d, &["(", "", "", ")"]);
Separators at the start or end of a string are neighbored by empty strings.
let d: Vec<_> = "010".split("0").collect(); assert_eq!(d, &["", "1", ""]);
When the empty string is used as a separator, it separates every character in the string, along with the beginning and end of the string.
let f: Vec<_> = "rust".split("").collect(); assert_eq!(f, &["", "r", "u", "s", "t", ""]);
Contiguous separators can lead to possibly surprising behavior when whitespace is used as the separator. This code is correct:
let x = " a b c".to_string(); let d: Vec<_> = x.split(' ').collect(); assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
It does not give you:
assert_eq!(d, &["a", "b", "c"]);
Use split_whitespace for this behavior.
pub fn rsplit<'a, P>(&'a self, pat: P) -> RSplit<'a, P> where
    P: Pattern<'a>,
    <P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, 1.0.0[src] 
pub fn rsplit<'a, P>(&'a self, pat: P) -> RSplit<'a, P> where
    P: Pattern<'a>,
    <P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, An iterator over substrings of the given string slice, separated by characters matched by a pattern and yielded in reverse order.
The pattern can be a &str, char, or a closure that determines the
split.
Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator if a forward/reverse
search yields the same elements.
For iterating from the front, the split method can be used.
Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect(); assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]); let v: Vec<&str> = "".rsplit('X').collect(); assert_eq!(v, [""]); let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect(); assert_eq!(v, ["leopard", "tiger", "", "lion"]); let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect(); assert_eq!(v, ["leopard", "tiger", "lion"]);
A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect(); assert_eq!(v, ["ghi", "def", "abc"]);
pub fn split_terminator<'a, P>(&'a self, pat: P) -> SplitTerminator<'a, P> where
    P: Pattern<'a>, 1.0.0[src] 
pub fn split_terminator<'a, P>(&'a self, pat: P) -> SplitTerminator<'a, P> where
    P: Pattern<'a>, An iterator over substrings of the given string slice, separated by characters matched by a pattern.
The pattern can be a &str, char, or a closure that determines the
split.
Equivalent to split, except that the trailing substring
is skipped if empty.
This method can be used for string data that is terminated, rather than separated by a pattern.
Iterator behavior
The returned iterator will be a DoubleEndedIterator if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, eg, char but not for &str.
If the pattern allows a reverse search but its results might differ
from a forward search, the rsplit_terminator method can be used.
Examples
Basic usage:
let v: Vec<&str> = "A.B.".split_terminator('.').collect(); assert_eq!(v, ["A", "B"]); let v: Vec<&str> = "A..B..".split_terminator(".").collect(); assert_eq!(v, ["A", "", "B", ""]);
pub fn rsplit_terminator<'a, P>(&'a self, pat: P) -> RSplitTerminator<'a, P> where
    P: Pattern<'a>,
    <P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, 1.0.0[src] 
pub fn rsplit_terminator<'a, P>(&'a self, pat: P) -> RSplitTerminator<'a, P> where
    P: Pattern<'a>,
    <P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, An iterator over substrings of self, separated by characters
matched by a pattern and yielded in reverse order.
The pattern can be a simple &str, char, or a closure that
determines the split.
Additional libraries might provide more complex patterns like
regular expressions.
Equivalent to split, except that the trailing substring is
skipped if empty.
This method can be used for string data that is terminated, rather than separated by a pattern.
Iterator behavior
The returned iterator requires that the pattern supports a reverse search, and it will be double ended if a forward/reverse search yields the same elements.
For iterating from the front, the split_terminator method can be
used.
Examples
let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect(); assert_eq!(v, ["B", "A"]); let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect(); assert_eq!(v, ["", "B", "", "A"]);
pub fn splitn<'a, P>(&'a self, n: usize, pat: P) -> SplitN<'a, P> where
    P: Pattern<'a>, 1.0.0[src] 
pub fn splitn<'a, P>(&'a self, n: usize, pat: P) -> SplitN<'a, P> where
    P: Pattern<'a>, An iterator over substrings of the given string slice, separated by a
pattern, restricted to returning at most n items.
If n substrings are returned, the last substring (the nth substring)
will contain the remainder of the string.
The pattern can be a &str, char, or a closure that determines the
split.
Iterator behavior
The returned iterator will not be double ended, because it is not efficient to support.
If the pattern allows a reverse search, the rsplitn method can be
used.
Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect(); assert_eq!(v, ["Mary", "had", "a little lambda"]); let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect(); assert_eq!(v, ["lion", "", "tigerXleopard"]); let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect(); assert_eq!(v, ["abcXdef"]); let v: Vec<&str> = "".splitn(1, 'X').collect(); assert_eq!(v, [""]);
A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect(); assert_eq!(v, ["abc", "defXghi"]);
pub fn rsplitn<'a, P>(&'a self, n: usize, pat: P) -> RSplitN<'a, P> where
    P: Pattern<'a>,
    <P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, 1.0.0[src] 
pub fn rsplitn<'a, P>(&'a self, n: usize, pat: P) -> RSplitN<'a, P> where
    P: Pattern<'a>,
    <P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, An iterator over substrings of this string slice, separated by a
pattern, starting from the end of the string, restricted to returning
at most n items.
If n substrings are returned, the last substring (the nth substring)
will contain the remainder of the string.
The pattern can be a &str, char, or a closure that
determines the split.
Iterator behavior
The returned iterator will not be double ended, because it is not efficient to support.
For splitting from the front, the splitn method can be used.
Examples
Simple patterns:
let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect(); assert_eq!(v, ["lamb", "little", "Mary had a"]); let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect(); assert_eq!(v, ["leopard", "tiger", "lionX"]); let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect(); assert_eq!(v, ["leopard", "lion::tiger"]);
A more complex pattern, using a closure:
let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect(); assert_eq!(v, ["ghi", "abc1def"]);
pub fn matches<'a, P>(&'a self, pat: P) -> Matches<'a, P> where
    P: Pattern<'a>, 1.2.0[src] 
pub fn matches<'a, P>(&'a self, pat: P) -> Matches<'a, P> where
    P: Pattern<'a>, An iterator over the disjoint matches of a pattern within the given string slice.
The pattern can be a &str, char, or a closure that
determines if a character matches.
Iterator behavior
The returned iterator will be a DoubleEndedIterator if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, eg, char but not for &str.
If the pattern allows a reverse search but its results might differ
from a forward search, the rmatches method can be used.
Examples
Basic usage:
let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect(); assert_eq!(v, ["abc", "abc", "abc"]); let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect(); assert_eq!(v, ["1", "2", "3"]);
pub fn rmatches<'a, P>(&'a self, pat: P) -> RMatches<'a, P> where
    P: Pattern<'a>,
    <P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, 1.2.0[src] 
pub fn rmatches<'a, P>(&'a self, pat: P) -> RMatches<'a, P> where
    P: Pattern<'a>,
    <P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, An iterator over the disjoint matches of a pattern within this string slice, yielded in reverse order.
The pattern can be a &str, char, or a closure that determines if
a character matches.
Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator if a forward/reverse
search yields the same elements.
For iterating from the front, the matches method can be used.
Examples
Basic usage:
let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect(); assert_eq!(v, ["abc", "abc", "abc"]); let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect(); assert_eq!(v, ["3", "2", "1"]);
pub fn match_indices<'a, P>(&'a self, pat: P) -> MatchIndices<'a, P> where
    P: Pattern<'a>, 1.5.0[src] 
pub fn match_indices<'a, P>(&'a self, pat: P) -> MatchIndices<'a, P> where
    P: Pattern<'a>, An iterator over the disjoint matches of a pattern within this string slice as well as the index that the match starts at.
For matches of pat within self that overlap, only the indices
corresponding to the first match are returned.
The pattern can be a &str, char, or a closure that determines
if a character matches.
Iterator behavior
The returned iterator will be a DoubleEndedIterator if the pattern
allows a reverse search and forward/reverse search yields the same
elements. This is true for, eg, char but not for &str.
If the pattern allows a reverse search but its results might differ
from a forward search, the rmatch_indices method can be used.
Examples
Basic usage:
let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect(); assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]); let v: Vec<_> = "1abcabc2".match_indices("abc").collect(); assert_eq!(v, [(1, "abc"), (4, "abc")]); let v: Vec<_> = "ababa".match_indices("aba").collect(); assert_eq!(v, [(0, "aba")]); // only the first `aba`
pub fn rmatch_indices<'a, P>(&'a self, pat: P) -> RMatchIndices<'a, P> where
    P: Pattern<'a>,
    <P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, 1.5.0[src] 
pub fn rmatch_indices<'a, P>(&'a self, pat: P) -> RMatchIndices<'a, P> where
    P: Pattern<'a>,
    <P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, An iterator over the disjoint matches of a pattern within self,
yielded in reverse order along with the index of the match.
For matches of pat within self that overlap, only the indices
corresponding to the last match are returned.
The pattern can be a &str, char, or a closure that determines if a
character matches.
Iterator behavior
The returned iterator requires that the pattern supports a reverse
search, and it will be a DoubleEndedIterator if a forward/reverse
search yields the same elements.
For iterating from the front, the match_indices method can be used.
Examples
Basic usage:
let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect(); assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]); let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect(); assert_eq!(v, [(4, "abc"), (1, "abc")]); let v: Vec<_> = "ababa".rmatch_indices("aba").collect(); assert_eq!(v, [(2, "aba")]); // only the last `aba`
pub fn trim(&self) -> &str1.0.0[src] 
pub fn trim(&self) -> &strReturns a string slice with leading and trailing whitespace removed.
'Whitespace' is defined according to the terms of the Unicode Derived
Core Property White_Space.
Examples
Basic usage:
let s = " Hello\tworld\t"; assert_eq!("Hello\tworld", s.trim());
pub fn trim_left(&self) -> &str1.0.0[src] 
pub fn trim_left(&self) -> &strReturns a string slice with leading whitespace removed.
'Whitespace' is defined according to the terms of the Unicode Derived
Core Property White_Space.
Text directionality
A string is a sequence of bytes. 'Left' in this context means the first position of that byte string; for a language like Arabic or Hebrew which are 'right to left' rather than 'left to right', this will be the right side, not the left.
Examples
Basic usage:
let s = " Hello\tworld\t"; assert_eq!("Hello\tworld\t", s.trim_left());
Directionality:
let s = " English"; assert!(Some('E') == s.trim_left().chars().next()); let s = " עברית"; assert!(Some('ע') == s.trim_left().chars().next());
pub fn trim_right(&self) -> &str1.0.0[src] 
pub fn trim_right(&self) -> &strReturns a string slice with trailing whitespace removed.
'Whitespace' is defined according to the terms of the Unicode Derived
Core Property White_Space.
Text directionality
A string is a sequence of bytes. 'Right' in this context means the last position of that byte string; for a language like Arabic or Hebrew which are 'right to left' rather than 'left to right', this will be the left side, not the right.
Examples
Basic usage:
let s = " Hello\tworld\t"; assert_eq!(" Hello\tworld", s.trim_right());
Directionality:
let s = "English "; assert!(Some('h') == s.trim_right().chars().rev().next()); let s = "עברית "; assert!(Some('ת') == s.trim_right().chars().rev().next());
pub fn trim_matches<'a, P>(&'a self, pat: P) -> &'a str where
    P: Pattern<'a>,
    <P as Pattern<'a>>::Searcher: DoubleEndedSearcher<'a>, 1.0.0[src] 
pub fn trim_matches<'a, P>(&'a self, pat: P) -> &'a str where
    P: Pattern<'a>,
    <P as Pattern<'a>>::Searcher: DoubleEndedSearcher<'a>, Returns a string slice with all prefixes and suffixes that match a pattern repeatedly removed.
The pattern can be a char or a closure that determines if a
character matches.
Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar"); assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar"); let x: &[_] = &['1', '2']; assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");
A more complex pattern, using a closure:
assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
pub fn trim_left_matches<'a, P>(&'a self, pat: P) -> &'a str where
    P: Pattern<'a>, 1.0.0[src] 
pub fn trim_left_matches<'a, P>(&'a self, pat: P) -> &'a str where
    P: Pattern<'a>, Returns a string slice with all prefixes that match a pattern repeatedly removed.
The pattern can be a &str, char, or a closure that determines if
a character matches.
Text directionality
A string is a sequence of bytes. 'Left' in this context means the first position of that byte string; for a language like Arabic or Hebrew which are 'right to left' rather than 'left to right', this will be the right side, not the left.
Examples
Basic usage:
assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11"); assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123"); let x: &[_] = &['1', '2']; assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
pub fn trim_right_matches<'a, P>(&'a self, pat: P) -> &'a str where
    P: Pattern<'a>,
    <P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, 1.0.0[src] 
pub fn trim_right_matches<'a, P>(&'a self, pat: P) -> &'a str where
    P: Pattern<'a>,
    <P as Pattern<'a>>::Searcher: ReverseSearcher<'a>, Returns a string slice with all suffixes that match a pattern repeatedly removed.
The pattern can be a &str, char, or a closure that
determines if a character matches.
Text directionality
A string is a sequence of bytes. 'Right' in this context means the last position of that byte string; for a language like Arabic or Hebrew which are 'right to left' rather than 'left to right', this will be the left side, not the right.
Examples
Simple patterns:
assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar"); assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar"); let x: &[_] = &['1', '2']; assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");
A more complex pattern, using a closure:
assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");
pub fn parse<F>(&self) -> Result<F, <F as FromStr>::Err> where
    F: FromStr, 1.0.0[src] 
pub fn parse<F>(&self) -> Result<F, <F as FromStr>::Err> where
    F: FromStr, Parses this string slice into another type.
Because parse is so general, it can cause problems with type
inference. As such, parse is one of the few times you'll see
the syntax affectionately known as the 'turbofish': ::<>. This
helps the inference algorithm understand specifically which type
you're trying to parse into.
parse can parse any type that implements the FromStr trait.
Errors
Will return Err if it's not possible to parse this string slice into
the desired type.
Examples
Basic usage
let four: u32 = "4".parse().unwrap(); assert_eq!(4, four);
Using the 'turbofish' instead of annotating four:
let four = "4".parse::<u32>(); assert_eq!(Ok(4), four);
Failing to parse:
let nope = "j".parse::<u32>(); assert!(nope.is_err());
pub fn is_ascii(&self) -> bool1.23.0[src] 
pub fn is_ascii(&self) -> boolChecks if all characters in this string are within the ASCII range.
Examples
let ascii = "hello!\n"; let non_ascii = "Grüße, Jürgen ❤"; assert!(ascii.is_ascii()); assert!(!non_ascii.is_ascii());
pub fn eq_ignore_ascii_case(&self, other: &str) -> bool1.23.0[src] 
pub fn eq_ignore_ascii_case(&self, other: &str) -> boolChecks that two strings are an ASCII case-insensitive match.
Same as to_ascii_lowercase(a) == to_ascii_lowercase(b),
but without allocating and copying temporaries.
Examples
assert!("Ferris".eq_ignore_ascii_case("FERRIS")); assert!("Ferrös".eq_ignore_ascii_case("FERRöS")); assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));
pub fn make_ascii_uppercase(&mut self)1.23.0[src] 
pub fn make_ascii_uppercase(&mut self)Converts this string to its ASCII upper case equivalent in-place.
ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', but non-ASCII letters are unchanged.
To return a new uppercased value without modifying the existing one, use
to_ascii_uppercase.
pub fn make_ascii_lowercase(&mut self)1.23.0[src] 
pub fn make_ascii_lowercase(&mut self)Converts this string to its ASCII lower case equivalent in-place.
ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', but non-ASCII letters are unchanged.
To return a new lowercased value without modifying the existing one, use
to_ascii_lowercase.
Trait Implementations
impl<A: Copy + Array<Item = u8>> Copy for ArrayString<A> where
    A::Index: Copy, [src] 
impl<A: Copy + Array<Item = u8>> Copy for ArrayString<A> where
    A::Index: Copy, impl<A: Array<Item = u8>> Default for ArrayString<A>[src] 
impl<A: Array<Item = u8>> Default for ArrayString<A>fn default() -> ArrayString<A>[src] 
fn default() -> ArrayString<A>Return an empty ArrayString
impl<A: Array<Item = u8>> Deref for ArrayString<A>[src] 
impl<A: Array<Item = u8>> Deref for ArrayString<A>type Target = str
The resulting type after dereferencing.
fn deref(&self) -> &str[src] 
fn deref(&self) -> &strDereferences the value.
impl<A: Array<Item = u8>> DerefMut for ArrayString<A>[src] 
impl<A: Array<Item = u8>> DerefMut for ArrayString<A>impl<A: Array<Item = u8>> PartialEq for ArrayString<A>[src] 
impl<A: Array<Item = u8>> PartialEq for ArrayString<A>fn eq(&self, rhs: &Self) -> bool[src] 
fn eq(&self, rhs: &Self) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src] 
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl<A: Array<Item = u8>> PartialEq<str> for ArrayString<A>[src] 
impl<A: Array<Item = u8>> PartialEq<str> for ArrayString<A>fn eq(&self, rhs: &str) -> bool[src] 
fn eq(&self, rhs: &str) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src] 
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl<A: Array<Item = u8>> PartialEq<ArrayString<A>> for str[src] 
impl<A: Array<Item = u8>> PartialEq<ArrayString<A>> for strfn eq(&self, rhs: &ArrayString<A>) -> bool[src] 
fn eq(&self, rhs: &ArrayString<A>) -> boolThis method tests for self and other values to be equal, and is used by ==. Read more
fn ne(&self, other: &Rhs) -> bool1.0.0[src] 
fn ne(&self, other: &Rhs) -> boolThis method tests for !=.
impl<A: Array<Item = u8>> Eq for ArrayString<A>[src] 
impl<A: Array<Item = u8>> Eq for ArrayString<A>impl<A: Array<Item = u8>> Hash for ArrayString<A>[src] 
impl<A: Array<Item = u8>> Hash for ArrayString<A>fn hash<H: Hasher>(&self, h: &mut H)[src] 
fn hash<H: Hasher>(&self, h: &mut H)Feeds this value into the given [Hasher]. Read more
fn hash_slice<H>(data: &[Self], state: &mut H) where
    H: Hasher, 1.3.0[src] 
fn hash_slice<H>(data: &[Self], state: &mut H) where
    H: Hasher, Feeds a slice of this type into the given [Hasher]. Read more
impl<A: Array<Item = u8>> Borrow<str> for ArrayString<A>[src] 
impl<A: Array<Item = u8>> Borrow<str> for ArrayString<A>impl<A: Array<Item = u8>> AsRef<str> for ArrayString<A>[src] 
impl<A: Array<Item = u8>> AsRef<str> for ArrayString<A>impl<A: Array<Item = u8>> Debug for ArrayString<A>[src] 
impl<A: Array<Item = u8>> Debug for ArrayString<A>fn fmt(&self, f: &mut Formatter) -> Result[src] 
fn fmt(&self, f: &mut Formatter) -> ResultFormats the value using the given formatter. Read more
impl<A: Array<Item = u8>> Display for ArrayString<A>[src] 
impl<A: Array<Item = u8>> Display for ArrayString<A>fn fmt(&self, f: &mut Formatter) -> Result[src] 
fn fmt(&self, f: &mut Formatter) -> ResultFormats the value using the given formatter. Read more
impl<A: Array<Item = u8>> Write for ArrayString<A>[src] 
impl<A: Array<Item = u8>> Write for ArrayString<A>Write appends written data to the end of the string.
fn write_char(&mut self, c: char) -> Result[src] 
fn write_char(&mut self, c: char) -> ResultWrites a [char] into this writer, returning whether the write succeeded. Read more
fn write_str(&mut self, s: &str) -> Result[src] 
fn write_str(&mut self, s: &str) -> ResultWrites a slice of bytes into this writer, returning whether the write succeeded. Read more
fn write_fmt(&mut self, args: Arguments) -> Result<(), Error>1.0.0[src] 
fn write_fmt(&mut self, args: Arguments) -> Result<(), Error>Glue for usage of the [write!] macro with implementors of this trait. Read more
impl<A: Array<Item = u8> + Copy> Clone for ArrayString<A>[src] 
impl<A: Array<Item = u8> + Copy> Clone for ArrayString<A>fn clone(&self) -> ArrayString<A>[src] 
fn clone(&self) -> ArrayString<A>Returns a copy of the value. Read more
fn clone_from(&mut self, rhs: &Self)[src] 
fn clone_from(&mut self, rhs: &Self)Performs copy-assignment from source. Read more
impl<A: Array<Item = u8>> PartialOrd for ArrayString<A>[src] 
impl<A: Array<Item = u8>> PartialOrd for ArrayString<A>fn partial_cmp(&self, rhs: &Self) -> Option<Ordering>[src] 
fn partial_cmp(&self, rhs: &Self) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, rhs: &Self) -> bool[src] 
fn lt(&self, rhs: &Self) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, rhs: &Self) -> bool[src] 
fn le(&self, rhs: &Self) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, rhs: &Self) -> bool[src] 
fn gt(&self, rhs: &Self) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, rhs: &Self) -> bool[src] 
fn ge(&self, rhs: &Self) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl<A: Array<Item = u8>> PartialOrd<str> for ArrayString<A>[src] 
impl<A: Array<Item = u8>> PartialOrd<str> for ArrayString<A>fn partial_cmp(&self, rhs: &str) -> Option<Ordering>[src] 
fn partial_cmp(&self, rhs: &str) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, rhs: &str) -> bool[src] 
fn lt(&self, rhs: &str) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, rhs: &str) -> bool[src] 
fn le(&self, rhs: &str) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, rhs: &str) -> bool[src] 
fn gt(&self, rhs: &str) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, rhs: &str) -> bool[src] 
fn ge(&self, rhs: &str) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl<A: Array<Item = u8>> PartialOrd<ArrayString<A>> for str[src] 
impl<A: Array<Item = u8>> PartialOrd<ArrayString<A>> for strfn partial_cmp(&self, rhs: &ArrayString<A>) -> Option<Ordering>[src] 
fn partial_cmp(&self, rhs: &ArrayString<A>) -> Option<Ordering>This method returns an ordering between self and other values if one exists. Read more
fn lt(&self, rhs: &ArrayString<A>) -> bool[src] 
fn lt(&self, rhs: &ArrayString<A>) -> boolThis method tests less than (for self and other) and is used by the < operator. Read more
fn le(&self, rhs: &ArrayString<A>) -> bool[src] 
fn le(&self, rhs: &ArrayString<A>) -> boolThis method tests less than or equal to (for self and other) and is used by the <= operator. Read more
fn gt(&self, rhs: &ArrayString<A>) -> bool[src] 
fn gt(&self, rhs: &ArrayString<A>) -> boolThis method tests greater than (for self and other) and is used by the > operator. Read more
fn ge(&self, rhs: &ArrayString<A>) -> bool[src] 
fn ge(&self, rhs: &ArrayString<A>) -> boolThis method tests greater than or equal to (for self and other) and is used by the >= operator. Read more
impl<A: Array<Item = u8>> Ord for ArrayString<A>[src] 
impl<A: Array<Item = u8>> Ord for ArrayString<A>fn cmp(&self, rhs: &Self) -> Ordering[src] 
fn cmp(&self, rhs: &Self) -> OrderingThis method returns an Ordering between self and other. Read more
fn max(self, other: Self) -> Self1.21.0[src] 
fn max(self, other: Self) -> SelfCompares and returns the maximum of two values. Read more
fn min(self, other: Self) -> Self1.21.0[src] 
fn min(self, other: Self) -> SelfCompares and returns the minimum of two values. Read more