1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
//! Low level AES IGE functionality //! //! AES ECB, CBC, XTS, CTR, CFB, GCM and other conventional symmetric encryption //! modes are found in [`symm`]. This is the implementation of AES IGE. //! //! Advanced Encryption Standard (AES) provides symmetric key cipher that //! the same key is used to encrypt and decrypt data. This implementation //! uses 128, 192, or 256 bit keys. This module provides functions to //! create a new key with [`new_encrypt`] and perform an encryption/decryption //! using that key with [`aes_ige`]. //! //! [`new_encrypt`]: struct.AesKey.html#method.new_encrypt //! [`aes_ige`]: fn.aes_ige.html //! //! The [`symm`] module should be used in preference to this module in most cases. //! The IGE block cypher is a non-traditional cipher mode. More traditional AES //! encryption methods are found in the [`Crypter`] and [`Cipher`] structs. //! //! [`symm`]: ../symm/index.html //! [`Crypter`]: ../symm/struct.Crypter.html //! [`Cipher`]: ../symm/struct.Cipher.html //! //! # Examples //! //! ```rust //! # extern crate openssl; //! extern crate hex; //! use openssl::aes::{AesKey, KeyError, aes_ige}; //! use openssl::symm::Mode; //! use hex::FromHex; //! //! fn decrypt() -> Result<(), KeyError> { //! let raw_key = "000102030405060708090A0B0C0D0E0F"; //! let hex_cipher = "12345678901234561234567890123456"; //! let randomness = "000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F"; //! if let (Ok(key_as_u8), Ok(cipher_as_u8), Ok(mut iv_as_u8)) = //! (Vec::from_hex(raw_key), Vec::from_hex(hex_cipher), Vec::from_hex(randomness)) { //! let key = AesKey::new_encrypt(&key_as_u8)?; //! let mut output = vec![0u8; cipher_as_u8.len()]; //! aes_ige(&cipher_as_u8, &mut output, &key, &mut iv_as_u8, Mode::Encrypt); //! assert_eq!(hex::encode(output), "a6ad974d5cea1d36d2f367980907ed32"); //! } //! Ok(()) //! } //! //! # fn main() { //! # decrypt(); //! # } use ffi; use std::mem; use libc::c_int; use symm::Mode; /// Provides Error handling for parsing keys. #[derive(Debug)] pub struct KeyError(()); /// The key used to encrypt or decrypt cipher blocks. pub struct AesKey(ffi::AES_KEY); impl AesKey { /// Prepares a key for encryption. /// /// # Failure /// /// Returns an error if the key is not 128, 192, or 256 bits. pub fn new_encrypt(key: &[u8]) -> Result<AesKey, KeyError> { unsafe { assert!(key.len() <= c_int::max_value() as usize / 8); let mut aes_key = mem::uninitialized(); let r = ffi::AES_set_encrypt_key( key.as_ptr() as *const _, key.len() as c_int * 8, &mut aes_key, ); if r == 0 { Ok(AesKey(aes_key)) } else { Err(KeyError(())) } } } /// Prepares a key for decryption. /// /// # Failure /// /// Returns an error if the key is not 128, 192, or 256 bits. pub fn new_decrypt(key: &[u8]) -> Result<AesKey, KeyError> { unsafe { assert!(key.len() <= c_int::max_value() as usize / 8); let mut aes_key = mem::uninitialized(); let r = ffi::AES_set_decrypt_key( key.as_ptr() as *const _, key.len() as c_int * 8, &mut aes_key, ); if r == 0 { Ok(AesKey(aes_key)) } else { Err(KeyError(())) } } } } /// Performs AES IGE encryption or decryption /// /// AES IGE (Infinite Garble Extension) is a form of AES block cipher utilized in /// OpenSSL. Infinite Garble referes to propogating forward errors. IGE, like other /// block ciphers implemented for AES requires an initalization vector. The IGE mode /// allows a stream of blocks to be encrypted or decrypted without having the entire /// plaintext available. For more information, visit [AES IGE Encryption]. /// /// This block cipher uses 16 byte blocks. The rust implmentation will panic /// if the input or output does not meet this 16-byte boundry. Attention must /// be made in this low level implementation to pad the value to the 128-bit boundry. /// /// [AES IGE Encryption]: http://www.links.org/files/openssl-ige.pdf /// /// # Panics /// /// Panics if `in_` is not the same length as `out`, if that length is not a multiple of 16, or if /// `iv` is not at least 32 bytes. pub fn aes_ige(in_: &[u8], out: &mut [u8], key: &AesKey, iv: &mut [u8], mode: Mode) { unsafe { assert!(in_.len() == out.len()); assert!(in_.len() % ffi::AES_BLOCK_SIZE as usize == 0); assert!(iv.len() >= ffi::AES_BLOCK_SIZE as usize * 2); let mode = match mode { Mode::Encrypt => ffi::AES_ENCRYPT, Mode::Decrypt => ffi::AES_DECRYPT, }; ffi::AES_ige_encrypt( in_.as_ptr() as *const _, out.as_mut_ptr() as *mut _, in_.len(), &key.0, iv.as_mut_ptr() as *mut _, mode, ); } } #[cfg(test)] mod test { use hex::FromHex; use symm::Mode; use super::*; // From https://www.mgp25.com/AESIGE/ #[test] fn ige_vector_1() { let raw_key = "000102030405060708090A0B0C0D0E0F"; let raw_iv = "000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F"; let raw_pt = "0000000000000000000000000000000000000000000000000000000000000000"; let raw_ct = "1A8519A6557BE652E9DA8E43DA4EF4453CF456B4CA488AA383C79C98B34797CB"; let key = AesKey::new_encrypt(&Vec::from_hex(raw_key).unwrap()).unwrap(); let mut iv = Vec::from_hex(raw_iv).unwrap(); let pt = Vec::from_hex(raw_pt).unwrap(); let ct = Vec::from_hex(raw_ct).unwrap(); let mut ct_actual = vec![0; ct.len()]; aes_ige(&pt, &mut ct_actual, &key, &mut iv, Mode::Encrypt); assert_eq!(ct_actual, ct); let key = AesKey::new_decrypt(&Vec::from_hex(raw_key).unwrap()).unwrap(); let mut iv = Vec::from_hex(raw_iv).unwrap(); let mut pt_actual = vec![0; pt.len()]; aes_ige(&ct, &mut pt_actual, &key, &mut iv, Mode::Decrypt); assert_eq!(pt_actual, pt); } }