1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
//! Low level AES IGE functionality
//!
//! AES ECB, CBC, XTS, CTR, CFB, GCM and other conventional symmetric encryption
//! modes are found in [`symm`].  This is the implementation of AES IGE.
//!
//! Advanced Encryption Standard (AES) provides symmetric key cipher that
//! the same key is used to encrypt and decrypt data.  This implementation
//! uses 128, 192, or 256 bit keys.  This module provides functions to
//! create a new key with [`new_encrypt`] and perform an encryption/decryption
//! using that key with [`aes_ige`].
//!
//! [`new_encrypt`]: struct.AesKey.html#method.new_encrypt
//! [`aes_ige`]: fn.aes_ige.html
//!
//! The [`symm`] module should be used in preference to this module in most cases.
//! The IGE block cypher is a non-traditional cipher mode.  More traditional AES
//! encryption methods are found in the [`Crypter`] and [`Cipher`] structs.
//!
//! [`symm`]: ../symm/index.html
//! [`Crypter`]: ../symm/struct.Crypter.html
//! [`Cipher`]: ../symm/struct.Cipher.html
//!
//! # Examples
//!
//! ```rust
//! # extern crate openssl;
//! extern crate hex;
//! use openssl::aes::{AesKey, KeyError, aes_ige};
//! use openssl::symm::Mode;
//! use hex::FromHex;
//!
//! fn decrypt() -> Result<(), KeyError> {
//!   let raw_key = "000102030405060708090A0B0C0D0E0F";
//!   let hex_cipher = "12345678901234561234567890123456";
//!   let randomness = "000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F";
//!   if let (Ok(key_as_u8), Ok(cipher_as_u8), Ok(mut iv_as_u8)) =
//!       (Vec::from_hex(raw_key), Vec::from_hex(hex_cipher), Vec::from_hex(randomness)) {
//!     let key = AesKey::new_encrypt(&key_as_u8)?;
//!     let mut output = vec![0u8; cipher_as_u8.len()];
//!     aes_ige(&cipher_as_u8, &mut output, &key, &mut iv_as_u8, Mode::Encrypt);
//!     assert_eq!(hex::encode(output), "a6ad974d5cea1d36d2f367980907ed32");
//!   }
//!   Ok(())
//! }
//!
//! # fn main() {
//! #   decrypt();
//! # }
use ffi;
use std::mem;
use libc::c_int;

use symm::Mode;

/// Provides Error handling for parsing keys.
#[derive(Debug)]
pub struct KeyError(());

/// The key used to encrypt or decrypt cipher blocks.
pub struct AesKey(ffi::AES_KEY);

impl AesKey {
    /// Prepares a key for encryption.
    ///
    /// # Failure
    ///
    /// Returns an error if the key is not 128, 192, or 256 bits.
    pub fn new_encrypt(key: &[u8]) -> Result<AesKey, KeyError> {
        unsafe {
            assert!(key.len() <= c_int::max_value() as usize / 8);

            let mut aes_key = mem::uninitialized();
            let r = ffi::AES_set_encrypt_key(
                key.as_ptr() as *const _,
                key.len() as c_int * 8,
                &mut aes_key,
            );
            if r == 0 {
                Ok(AesKey(aes_key))
            } else {
                Err(KeyError(()))
            }
        }
    }

    /// Prepares a key for decryption.
    ///
    /// # Failure
    ///
    /// Returns an error if the key is not 128, 192, or 256 bits.
    pub fn new_decrypt(key: &[u8]) -> Result<AesKey, KeyError> {
        unsafe {
            assert!(key.len() <= c_int::max_value() as usize / 8);

            let mut aes_key = mem::uninitialized();
            let r = ffi::AES_set_decrypt_key(
                key.as_ptr() as *const _,
                key.len() as c_int * 8,
                &mut aes_key,
            );

            if r == 0 {
                Ok(AesKey(aes_key))
            } else {
                Err(KeyError(()))
            }
        }
    }
}

/// Performs AES IGE encryption or decryption
///
/// AES IGE (Infinite Garble Extension) is a form of AES block cipher utilized in
/// OpenSSL.  Infinite Garble referes to propogating forward errors.  IGE, like other
/// block ciphers implemented for AES requires an initalization vector.  The IGE mode
/// allows a stream of blocks to be encrypted or decrypted without having the entire
/// plaintext available.  For more information, visit [AES IGE Encryption].
///
/// This block cipher uses 16 byte blocks.  The rust implmentation will panic
/// if the input or output does not meet this 16-byte boundry.  Attention must
/// be made in this low level implementation to pad the value to the 128-bit boundry.
///
/// [AES IGE Encryption]: http://www.links.org/files/openssl-ige.pdf
///
/// # Panics
///
/// Panics if `in_` is not the same length as `out`, if that length is not a multiple of 16, or if
/// `iv` is not at least 32 bytes.
pub fn aes_ige(in_: &[u8], out: &mut [u8], key: &AesKey, iv: &mut [u8], mode: Mode) {
    unsafe {
        assert!(in_.len() == out.len());
        assert!(in_.len() % ffi::AES_BLOCK_SIZE as usize == 0);
        assert!(iv.len() >= ffi::AES_BLOCK_SIZE as usize * 2);

        let mode = match mode {
            Mode::Encrypt => ffi::AES_ENCRYPT,
            Mode::Decrypt => ffi::AES_DECRYPT,
        };
        ffi::AES_ige_encrypt(
            in_.as_ptr() as *const _,
            out.as_mut_ptr() as *mut _,
            in_.len(),
            &key.0,
            iv.as_mut_ptr() as *mut _,
            mode,
        );
    }
}

#[cfg(test)]
mod test {
    use hex::FromHex;

    use symm::Mode;
    use super::*;

    // From https://www.mgp25.com/AESIGE/
    #[test]
    fn ige_vector_1() {
        let raw_key = "000102030405060708090A0B0C0D0E0F";
        let raw_iv = "000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F";
        let raw_pt = "0000000000000000000000000000000000000000000000000000000000000000";
        let raw_ct = "1A8519A6557BE652E9DA8E43DA4EF4453CF456B4CA488AA383C79C98B34797CB";

        let key = AesKey::new_encrypt(&Vec::from_hex(raw_key).unwrap()).unwrap();
        let mut iv = Vec::from_hex(raw_iv).unwrap();
        let pt = Vec::from_hex(raw_pt).unwrap();
        let ct = Vec::from_hex(raw_ct).unwrap();

        let mut ct_actual = vec![0; ct.len()];
        aes_ige(&pt, &mut ct_actual, &key, &mut iv, Mode::Encrypt);
        assert_eq!(ct_actual, ct);

        let key = AesKey::new_decrypt(&Vec::from_hex(raw_key).unwrap()).unwrap();
        let mut iv = Vec::from_hex(raw_iv).unwrap();
        let mut pt_actual = vec![0; pt.len()];
        aes_ige(&ct, &mut pt_actual, &key, &mut iv, Mode::Decrypt);
        assert_eq!(pt_actual, pt);
    }
}