1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
//! This crate implements a structure that can be used as a generic array type.use
//! Core Rust array types `[T; N]` can't be used generically with
//! respect to `N`, so for example this:
//!
//! ```{should_fail}
//! struct Foo<T, N> {
//!     data: [T; N]
//! }
//! ```
//!
//! won't work.
//!
//! **generic-array** exports a `GenericArray<T,N>` type, which lets
//! the above be implemented as:
//!
//! ```
//! # use generic_array::{ArrayLength, GenericArray};
//! struct Foo<T, N: ArrayLength<T>> {
//!     data: GenericArray<T,N>
//! }
//! ```
//!
//! The `ArrayLength<T>` trait is implemented by default for
//! [unsigned integer types](../typenum/uint/index.html) from
//! [typenum](../typenum/index.html).
//!
//! For ease of use, an `arr!` macro is provided - example below:
//!
//! ```
//! # #[macro_use]
//! # extern crate generic_array;
//! # extern crate typenum;
//! # fn main() {
//! let array = arr![u32; 1, 2, 3];
//! assert_eq!(array[2], 3);
//! # }
//! ```

//#![deny(missing_docs)]
#![no_std]

pub extern crate typenum;
#[cfg(feature = "serde")]
extern crate serde;

mod hex;
mod impls;

#[cfg(feature = "serde")]
pub mod impl_serde;

use core::{mem, ptr, slice};

use core::marker::PhantomData;
use core::mem::ManuallyDrop;
pub use core::mem::transmute;
use core::ops::{Deref, DerefMut};

use typenum::bit::{B0, B1};
use typenum::uint::{UInt, UTerm, Unsigned};

#[cfg_attr(test, macro_use)]
pub mod arr;
pub mod iter;
pub use iter::GenericArrayIter;

/// Trait making `GenericArray` work, marking types to be used as length of an array
pub unsafe trait ArrayLength<T>: Unsigned {
    /// Associated type representing the array type for the number
    type ArrayType;
}

unsafe impl<T> ArrayLength<T> for UTerm {
    #[doc(hidden)]
    type ArrayType = ();
}

/// Internal type used to generate a struct of appropriate size
#[allow(dead_code)]
#[repr(C)]
#[doc(hidden)]
pub struct GenericArrayImplEven<T, U> {
    parent1: U,
    parent2: U,
    _marker: PhantomData<T>,
}

impl<T: Clone, U: Clone> Clone for GenericArrayImplEven<T, U> {
    fn clone(&self) -> GenericArrayImplEven<T, U> {
        GenericArrayImplEven {
            parent1: self.parent1.clone(),
            parent2: self.parent2.clone(),
            _marker: PhantomData,
        }
    }
}

impl<T: Copy, U: Copy> Copy for GenericArrayImplEven<T, U> {}

/// Internal type used to generate a struct of appropriate size
#[allow(dead_code)]
#[repr(C)]
#[doc(hidden)]
pub struct GenericArrayImplOdd<T, U> {
    parent1: U,
    parent2: U,
    data: T,
}

impl<T: Clone, U: Clone> Clone for GenericArrayImplOdd<T, U> {
    fn clone(&self) -> GenericArrayImplOdd<T, U> {
        GenericArrayImplOdd {
            parent1: self.parent1.clone(),
            parent2: self.parent2.clone(),
            data: self.data.clone(),
        }
    }
}

impl<T: Copy, U: Copy> Copy for GenericArrayImplOdd<T, U> {}

unsafe impl<T, N: ArrayLength<T>> ArrayLength<T> for UInt<N, B0> {
    #[doc(hidden)]
    type ArrayType = GenericArrayImplEven<T, N::ArrayType>;
}

unsafe impl<T, N: ArrayLength<T>> ArrayLength<T> for UInt<N, B1> {
    #[doc(hidden)]
    type ArrayType = GenericArrayImplOdd<T, N::ArrayType>;
}

/// Struct representing a generic array - `GenericArray<T, N>` works like [T; N]
#[allow(dead_code)]
pub struct GenericArray<T, U: ArrayLength<T>> {
    data: U::ArrayType,
}

impl<T, N> Deref for GenericArray<T, N>
where
    N: ArrayLength<T>,
{
    type Target = [T];

    fn deref(&self) -> &[T] {
        unsafe { slice::from_raw_parts(self as *const Self as *const T, N::to_usize()) }
    }
}

impl<T, N> DerefMut for GenericArray<T, N>
where
    N: ArrayLength<T>,
{
    fn deref_mut(&mut self) -> &mut [T] {
        unsafe { slice::from_raw_parts_mut(self as *mut Self as *mut T, N::to_usize()) }
    }
}

struct ArrayBuilder<T, N: ArrayLength<T>> {
    array: ManuallyDrop<GenericArray<T, N>>,
    position: usize,
}

impl<T, N: ArrayLength<T>> ArrayBuilder<T, N> {
    fn new() -> ArrayBuilder<T, N> {
        ArrayBuilder {
            array: ManuallyDrop::new(unsafe { mem::uninitialized() }),
            position: 0,
        }
    }

    fn into_inner(self) -> GenericArray<T, N> {
        let array = unsafe { ptr::read(&self.array) };

        mem::forget(self);

        ManuallyDrop::into_inner(array)
    }
}

impl<T, N: ArrayLength<T>> Drop for ArrayBuilder<T, N> {
    fn drop(&mut self) {
        for value in self.array.iter_mut().take(self.position) {
            unsafe {
                ptr::drop_in_place(value);
            }
        }
    }
}

struct ArrayConsumer<T, N: ArrayLength<T>> {
    array: ManuallyDrop<GenericArray<T, N>>,
    position: usize,
}

impl<T, N: ArrayLength<T>> ArrayConsumer<T, N> {
    fn new(array: GenericArray<T, N>) -> ArrayConsumer<T, N> {
        ArrayConsumer {
            array: ManuallyDrop::new(array),
            position: 0,
        }
    }
}

impl<T, N: ArrayLength<T>> Drop for ArrayConsumer<T, N> {
    fn drop(&mut self) {
        for i in self.position..N::to_usize() {
            unsafe {
                ptr::drop_in_place(self.array.get_unchecked_mut(i));
            }
        }
    }
}

impl<T, N> GenericArray<T, N>
where
    N: ArrayLength<T>,
{
    /// Initializes a new `GenericArray` instance using the given function.
    ///
    /// If the generator function panics while initializing the array,
    /// any already initialized elements will be dropped.
    pub fn generate<F>(f: F) -> GenericArray<T, N>
    where
        F: Fn(usize) -> T,
    {
        let mut destination = ArrayBuilder::new();

        for (i, dst) in destination.array.iter_mut().enumerate() {
            unsafe {
                ptr::write(dst, f(i));
            }

            destination.position += 1;
        }

        destination.into_inner()
    }

    /// Map a function over a slice to a `GenericArray`.
    ///
    /// The length of the slice *must* be equal to the length of the array.
    #[inline]
    pub fn map_slice<S, F: Fn(&S) -> T>(s: &[S], f: F) -> GenericArray<T, N> {
        assert_eq!(s.len(), N::to_usize());

        Self::generate(|i| f(unsafe { s.get_unchecked(i) }))
    }

    /// Maps a `GenericArray` to another `GenericArray`.
    ///
    /// If the mapping function panics, any already initialized elements in the new array
    /// will be dropped, AND any unused elements in the source array will also be dropped.
    pub fn map<U, F>(self, f: F) -> GenericArray<U, N>
    where
        F: Fn(T) -> U,
        N: ArrayLength<U>,
    {
        let mut source = ArrayConsumer::new(self);
        let mut destination = ArrayBuilder::new();

        for (dst, src) in destination.array.iter_mut().zip(source.array.iter()) {
            unsafe {
                ptr::write(dst, f(ptr::read(src)));
            }

            source.position += 1;
            destination.position += 1;
        }

        destination.into_inner()
    }

    /// Maps a `GenericArray` to another `GenericArray` by reference.
    ///
    /// If the mapping function panics, any already initialized elements will be dropped.
    #[inline]
    pub fn map_ref<U, F>(&self, f: F) -> GenericArray<U, N>
    where
        F: Fn(&T) -> U,
        N: ArrayLength<U>,
    {
        GenericArray::generate(|i| f(unsafe { self.get_unchecked(i) }))
    }

    /// Combines two `GenericArray` instances and iterates through both of them,
    /// initializing a new `GenericArray` with the result of the zipped mapping function.
    ///
    /// If the mapping function panics, any already initialized elements in the new array
    /// will be dropped, AND any unused elements in the source arrays will also be dropped.
    pub fn zip<B, U, F>(self, rhs: GenericArray<B, N>, f: F) -> GenericArray<U, N>
    where
        F: Fn(T, B) -> U,
        N: ArrayLength<B> + ArrayLength<U>,
    {
        let mut left = ArrayConsumer::new(self);
        let mut right = ArrayConsumer::new(rhs);

        let mut destination = ArrayBuilder::new();

        for (dst, (lhs, rhs)) in
            destination.array.iter_mut().zip(left.array.iter().zip(
                right.array.iter(),
            ))
        {
            unsafe {
                ptr::write(dst, f(ptr::read(lhs), ptr::read(rhs)));
            }

            destination.position += 1;
            left.position += 1;
            right.position += 1;
        }

        destination.into_inner()
    }

    /// Combines two `GenericArray` instances and iterates through both of them by reference,
    /// initializing a new `GenericArray` with the result of the zipped mapping function.
    ///
    /// If the mapping function panics, any already initialized elements will be dropped.
    pub fn zip_ref<B, U, F>(&self, rhs: &GenericArray<B, N>, f: F) -> GenericArray<U, N>
    where
        F: Fn(&T, &B) -> U,
        N: ArrayLength<B> + ArrayLength<U>,
    {
        GenericArray::generate(|i| unsafe {
            f(self.get_unchecked(i), rhs.get_unchecked(i))
        })
    }

    /// Extracts a slice containing the entire array.
    #[inline]
    pub fn as_slice(&self) -> &[T] {
        self.deref()
    }

    /// Extracts a mutable slice containing the entire array.
    #[inline]
    pub fn as_mut_slice(&mut self) -> &mut [T] {
        self.deref_mut()
    }

    /// Converts slice to a generic array reference with inferred length;
    ///
    /// Length of the slice must be equal to the length of the array.
    #[inline]
    pub fn from_slice(slice: &[T]) -> &GenericArray<T, N> {
        assert_eq!(slice.len(), N::to_usize());

        unsafe { &*(slice.as_ptr() as *const GenericArray<T, N>) }
    }

    /// Converts mutable slice to a mutable generic array reference
    ///
    /// Length of the slice must be equal to the length of the array.
    #[inline]
    pub fn from_mut_slice(slice: &mut [T]) -> &mut GenericArray<T, N> {
        assert_eq!(slice.len(), N::to_usize());

        unsafe { &mut *(slice.as_mut_ptr() as *mut GenericArray<T, N>) }
    }
}

impl<T: Clone, N> GenericArray<T, N>
where
    N: ArrayLength<T>,
{
    /// Construct a `GenericArray` from a slice by cloning its content
    ///
    /// Length of the slice must be equal to the length of the array
    #[inline]
    pub fn clone_from_slice(list: &[T]) -> GenericArray<T, N> {
        Self::from_exact_iter(list.iter().cloned()).expect(
            "Slice must be the same length as the array",
        )
    }
}

impl<T, N> GenericArray<T, N>
where
    N: ArrayLength<T>,
{
    pub fn from_exact_iter<I>(iter: I) -> Option<Self>
    where
        I: IntoIterator<Item = T>,
        <I as IntoIterator>::IntoIter: ExactSizeIterator,
    {
        let iter = iter.into_iter();

        if iter.len() == N::to_usize() {
            let mut destination = ArrayBuilder::new();

            for (dst, src) in destination.array.iter_mut().zip(iter.into_iter()) {
                unsafe {
                    ptr::write(dst, src);
                }

                destination.position += 1;
            }

            let array = unsafe { ptr::read(&destination.array) };

            mem::forget(destination);

            Some(ManuallyDrop::into_inner(array))
        } else {
            None
        }
    }
}

impl<T, N> ::core::iter::FromIterator<T> for GenericArray<T, N>
where
    N: ArrayLength<T>,
    T: Default,
{
    fn from_iter<I>(iter: I) -> GenericArray<T, N>
    where
        I: IntoIterator<Item = T>,
    {
        let mut destination = ArrayBuilder::new();

        let defaults = ::core::iter::repeat(()).map(|_| T::default());

        for (dst, src) in destination.array.iter_mut().zip(
            iter.into_iter().chain(defaults),
        )
        {
            unsafe {
                ptr::write(dst, src);
            }
        }

        destination.into_inner()
    }
}

#[cfg(test)]
mod test {
    // Compile with:
    // cargo rustc --lib --profile test --release --
    //      -C target-cpu=native -C opt-level=3 --emit asm
    // and view the assembly to make sure test_assembly generates
    // SIMD instructions instead of a niave loop.

    #[inline(never)]
    pub fn black_box<T>(val: T) -> T {
        use core::{mem, ptr};

        let ret = unsafe { ptr::read_volatile(&val) };
        mem::forget(val);
        ret
    }

    #[test]
    fn test_assembly() {
        let a = black_box(arr![i32; 1, 3, 5, 7]);
        let b = black_box(arr![i32; 2, 4, 6, 8]);

        let c = a.zip_ref(&b, |l, r| l + r);

        assert_eq!(c, arr![i32; 3, 7, 11, 15]);
    }
}